Down-regulation of adrenal neuronal nitric oxide synthase mRNAs and proteins after deoxycorticosterone acetate-salt treatment in rats.

نویسندگان

  • Feng-Jie Lai
  • Ya-Chieh Hsin
  • Shiue-Chin Huang
  • Ching-Li Cheng
  • Shih-Chie Hsin
  • Ming-Chia Hsieh
  • Shyi-Jang Shin
چکیده

The aim of this study was to evaluate the possible changes of adrenal neuronal nitrite oxide synthase (nNOS) messenger RNA (mRNA) and protein of rats after deoxycorticosterone acetate (DOCA)-salt treatment. We determined adrenal nNOS expression in 12 vehicle-treated and 13 DOCA-salt-treated rats by in situ hybridization, immunohistochemistry, and multiplex RT-PCR methods. Adrenal nNOS was also detected by Western blot in five vehicle-treated and five DOCA-salt-treated rats. The results showed that adrenal nNOS mRNA and nNOS immunoreactivities were mainly localized in the medulla and some in the regions of zona glomerulosa. DOCA-salt treatment inactivated nNOS mRNA and peptide expression prominent in the adrenal medulla and slight in the zona glomerulosa. The relative quantities of nNOS mRNA in the adrenals of the DOCA-salt-treated group was 8.8-fold decreased. At the same time, the relative quantities of steroid acute regulatory protein mRNA and phenylethanolamine N-methyltransferase mRNA in the adrenals of the DOCA-salt-treated group were significantly decreased. Western blots showed that total adrenal nNOS were 3.7-fold down-regulated after DOCA-salt treatment. Our results indicated that the down-regulation of adrenal nNOS synthesis might be associated with the inactivation of adrenal function in face of volume expansion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impaired vasodilator activity in deoxycorticosterone acetate-salt hypertension is associated with increased protein O-GlcNAcylation.

Hyperglycemia, which increases O-linked beta-N-acetylglucosamine (O-GlcNAc) proteins, leads to changes in vascular reactivity. Because vascular dysfunction is a key feature of arterial hypertension, we hypothesized that vessels from deoxycorticosterone acetate and salt (DOCA-salt) rats exhibit increased O-GlcNAc proteins, which is associated with increased reactivity to constrictor stimuli. Aor...

متن کامل

Nitric oxide synthase isotype expression in salt-sensitive and salt-resistant Dahl rats.

Previous studies have suggested that salt-sensitive hypertension in humans and experimental animals may in part be due to dysregulation of the L-arginine/nitric oxide system. This study was conducted to determine the endothelial, inducible, and neuronal nitric oxide synthase expressions in the kidney, heart, aorta, and brain of salt-sensitive and salt-resistant Dahl rats. We studied salt-sensit...

متن کامل

Gene transfer of endothelial NO synthase and manganese superoxide dismutase on arterial vascular cell adhesion molecule-1 expression and superoxide production in deoxycorticosterone acetate-salt hypertension.

Enhanced vascular cell adhesion molecule-1 (VCAM-1) expression directly contributes to vascular dysfunction in hypertension. Decreased NO and/or increased superoxide are causative factors for such an event in the vessel wall. The present study was undertaken to determine whether gene transfer of endothelial NO synthase (eNOS) or manganese superoxide dismutase (MnSOD) affects VCAM-1 levels in ar...

متن کامل

Increased nitric oxide synthase-3 expression in kidneys of deoxycorticosterone acetate-salt hypertensive rats.

In addition to its hemodynamic effects, nitric oxide (NO) may play a role in the renal tubular handling of sodium. Experiments were conducted to determine possible changes in renal nitric oxide synthase-3 (NOS3) expression in rats treated with deoxycorticosterone acetate (DOCA) and high salt. All rats were uninephrectomized, and either a placebo or DOCA pellet was implanted subcutaneously. Plac...

متن کامل

Role of matrix metalloproteinase II on analgesic effect of nitric oxide inhibition in rat

Abstract Introduction: Matrix metalloproteinase 2 is one of the inflammatory mediators that is involved in nociceptive processing and its production is regulated by many inflammatory factors such as nitric oxide. We studied the role of MMP-2 on the analgesic effects of nNOS inhibitor. Methods: Considering that nitric oxide has many roles in pain processing, we studied the CSF levels of MMP-2 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of steroid biochemistry and molecular biology

دوره 101 4-5  شماره 

صفحات  -

تاریخ انتشار 2006